Watch below some of our videos at conferences and seminars, where members of our group present highlights from our list of publications.
You can also listen to podcasts featuring Dr. Rebekka Burkholz (some are in German and some in English).
We also share other links to interesting articles, interviews, and more.
Based on papers:
Based on papers:
Based on papers:
Deep learning continues to achieve impressive breakthroughs across disciplines but relies on increasingly large neural network models that are trained on massive data sets. Their development inflicts costs that are only affordable by a few labs and prevent global participation in the creation of related technologies. In this talk, we will ask the question if it really has to be like this and discuss some of the major challenges that limit the success of deep learning on smaller scales. We will give three examples of complimentary approaches that could help us address the underlying issues: (i) early neural network sparsification, (ii) the integration of useful inductive bias in the design of problem specific neural network architectures (with biomedical applications), and (iii) the improvement of training from scratch in the context of graph neural networks.
Based on papers:
Based on papers:
Große KI-Modelle wie ChatGPT brauchen riesige Rechenzentren und jede Menge Energie und werden fast ausschließlich von Tech-Giganten entwickelt. Welche Vorteile hätte es, Deep Learning zu demokratisieren? Und wie können kleinere KI-Modelle dazu beitragen, die Abhängigkeit von großen Tech-Konzernen zu reduzieren? Wie man Deep Learning demokratisieren kann, das erforscht Dr. Rebekka Burkholz am CISPA Helmholtz-Zentrum für Informationssicherheit. Im „Forschungsquartett“-Gespräch mit detektor.fm-Redakteurin Esther Stephan erklärt sie, warum das notwendig ist, und wieso kleinere KI-Modelle vielleicht sogar besser sind.
Runde 2 unserer Sommer-Konferenz-Reihe: auf der ICML in Wien haben wir uns mit Rebekka Burkholz hingesetzt um über ihre Forschung und das Neueste im Bereich des maschinellen Lernens zu sprechen. Rebekka kam 2021 zum CISPA kam und ist seitdem mit einem ERC-Starting Grant ausgezeichnet worden, um mit ihrer Forschung neuronale Netzwerke effizienter zu machen. Im Podcast sprechen wir darüber, wie sie ihren wissenschaftlichen Hintergrund aus der Physik im Bereich KI anwendet und wie KI in Zukunft die Gesellschaft beeinflussen kann.
Listen to this interview of Rebekka Burkholz, faculty at the CISPA Helmholtz Center for Information Security. We talk about the composition of research groups and of research papers. Rebekka Burkholz: “I have the feeling that this meta-reading becomes more important as a person’s career progresses. Because early on, a researcher is typically very focused on the details of each paper and they try to understand what this method does and so on — and of course, researchers need to begin that way, really spending the time to attain to expertise in a particular focus. But with time, as a researcher has seen more ideas (and of course, in one particular focus, methods and questions all share some similarity), then the person acquires more and more overview as they continue reading. They are reading, essentially, for the links between findings, for implications of the findings and those links — and in this way, a more experienced reader of the research actually becomes engaged in a sort of literature discussion.”
Dr. Rebekka Burkholz and Dr. Julian Loss seem to have liked it on our podcast – they both are returning for their second episode of TL;DR! The two CISPA Faculty are working on completely different things, but they both have been awarded with a prestigious research grant by the European Research Council (ERC) this fall: the ERC Starting Grant. We talk about what it means for them to receive this grant, what their research has in common and how to facilitate interdisciplinary research. Now available at all your favorite podcast platforms!
CISPA-Faculty Dr. Rebekka Burkholz spricht in dieser Folge mit uns darüber, was relationales maschinelles Lernen ist und welche Chancen Methoden des maschinellen Lernens in der Diagnostik und Behandlung von Krankheiten eröffnen. Die Mathematikerin gibt zudem Einblicke, was Informatiker:innen und Mathematiker:innen unterscheidet und was aus ihrer Sicht helfen würde, mehr Frauen für eine Karriere in der Forschung zu begeistern.
After coffee break we had Rebekka Burkholz discussing current challenges when modelling gene regulation and how to fix them. Her approach is innovative and allows us to infer biological processes with both scalability and interpretability.
Link: https://bsky.app/profile/netbiomed2025.bsky.social/post/3lqmzjkcks22l
Beim Berlin Summer Meeting am MDC-BIMSB trafen sich Molekularbiolog*innen und Bioinformatiker*innen, um die neuesten Erfolge und Herausforderungen zu diskutieren. Sie loteten aus, wie sie Künstliche Intelligenz am besten für die Biomedizin nutzen können.
Link: https://www.mdc-berlin.de/de/news/news/die-abenteuer-der-ki-der-genomik